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Abstract

What are the implications on trading activity if investors are not sophisticated

enough to understand and evaluate trades that have a complex payoff structure? Can

frictions generated by this type of financial complexity be so severe that they lead to

a complete market freeze, like that of the recent financial crisis? We show that for

smooth convex preferences, including subjective expected utility, even extreme com-

plexity cannot halt trade, unlike what happens for non-smooth preferences, such as

maxmin expected utility. In the latter case, policies that make complex securities eas-

ier to understand or investors more sophisticated have a positive welfare effect, as they

allow for existing gains from trade to materialise.

JEL-Classifications: D70, G01.

Keywords: Financial Complexity, Financial Crises, Agreeable Bets, Agreeable

Trades, No Trade, Betting, Ambiguity Aversion.

1 Introduction

An implicit assumption when modelling financial markets is that each investor is so-

phisticated enough to be able to understand and trade any available security, however

complex it might be. In reality, however, cognitive limitations do exist. Investors
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may have limited attention and time, be unaware of certain dimensions of the payoff

structure, have difficulty formulating complex plans or lack special training. Moreover,

information acquisition about past performance of some securities may be too costly.

The Economic Affairs Committee (2009) reports that “It is hard for investors to eval-

uate complex financial instruments, because difficult risk modelling is required, and

because they are often unaware of the details of the asset pool which backs financial

securitisations”.

To provide an example, consider the following description of security Jayanne 4,

which was marketed by Credit Agricole in 2007 (Célérier and Vallée (2016)):

This is a growth product linked to a basket composed of the FTSE Euro First

80, the FTSE 100, the SMI and the NIKKEI 225. The Annual Performance

is set at 5% for the first three years. In the following years, if the performance

since the start date of the worst-performing index is positive or null, then

the Annual Performance for that year is registered at 5%, otherwise 0%.

The Basket Performance since the start date is registered every six months.

The Final Basket Performance is calculated as the average of all these six-

monthly readings, capped at a maximum basket performance of 100%. After

8 years, the product offers a guaranteed capital return of 100%, plus the

greater of either the sum of the Annual Performances, or 100% of the Final

Basket performance.

A typical investor probably understands the indices FTSE Euro First 80, FTSE

100, SMI and NIKKEI 225, which are the basic ingredients of the security’s payoff

structure. In other words, he understands a “simple” bet that pays 1 if FTSE 100

is above 6000 tomorrow and 0 otherwise. However, he may fail to understand the

“complex” Jayanne 4, even though it is “just” a combination of these four indices.

Another example of a complex security is the Collaterized Debt Obligation (CDO),

which pools together cash-flow generating assets (mortgages, bonds and loans) and

repackages them into discrete tranches. Because each tranche has a different risk

profile and usually incorporates hundreds of thousands of underlying assets, it is a

complicated task to work out its payoff structure, even though it is easy to understand

the payoff structure of each separate underlying asset.

A result of these cognitive limitations is that although investors may be able to

trade “simple” securities, they may fail to consider all of their possible combinations

when formulating their portfolio. Polkovnichenko (2005) reports data from the Sur-

vey of Consumer Finances, showing that many households invest significant fractions

of their wealth simultaneously in well-diversified mutual funds and in un-diversified
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portfolios of individual stocks. Nieuwerburgh and Veldkamp (2010) derive optimal

under-diversification in a framework with costly information acquisition. Carlin et al.

(2013) show experimentally that complexity makes subjects less inclined to trade.

Is it possible that the effect of these limitations is so large that opportunities for

trade cease to exist completely? We study this question in a complete markets envi-

ronment with general convex preferences, where all Arrow-Debreu (A-D) securities are

available (paying 1 if some state occurs and 0 otherwise).

The complexity of a trade is defined to be the minimum number of different A-D

securities that can generate it. A trade that provides a different payoff at every state

is generated by a combination of all A-D securities, hence its complexity is n, the

number of states. A trade whose payoff differs only with respect to whether a state

has occurred or not is generated by the respective A-D security, hence its complexity

is 1. Cognitively constrained investors cannot formulate trades that are complex, even

if their welfare would increase as a result.

Our notion of complexity effectively allows investors to formulate only “coarse”

trades, which are measurable with respect to a coarse partition of the state space.

Maximum perceived complexity then only allows coarse trades that are measurable

with respect to a two-element partition, consisting of a state and its complement. Gul

et al. (2017) study investors with cognitive limitations who, as a result, formulate

only “coarse” (final) consumption plans, even though they can finance them using

all available trades, even complex ones. We elaborate on the differences of these two

approaches in the next section. However, it is important to emphasise that maximum

perceived complexity is very different (but less restrictive) from a standard incomplete

markets structure with one available A-D security. The former allows investors to buy

or sell any A-D security but not combine two or more, whereas the latter allows them

to trade only the unique security that is available.

Holding preferences and the initial allocation fixed, if there is trade without per-

ceived complexity, so that there are gains from trade, will there always be trade with

maximum perceived complexity? We analyse this question by characterising the exis-

tence of trading in terms of the investors’ beliefs (Theorem 2) and by refining the notion

of Pareto dominance in environments with uncertainty and diverse beliefs (Proposition

1).

The answer depends on how investors perceive risk and uncertainty. In particular,

we find that for smooth preferences, which do not allow for kinked indifference curves

(e.g. subjective expected utility, smooth ambiguity, multiplier and mean-variance pref-

erences), trading will not stop because of maximum perceived complexity. This is a

robust result, because it implies that trade will not stop also for all less extreme defini-
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tions of complexity, where investors are able to trade more than one simple security at

once, formulating less coarse trades. However, we also find that complexity can com-

pletely shut down trade if preferences are non-smooth, so that the indifference curve of

at least one investor has a kink at his initial allocation. We provide such an example

in Section 2 with maxmin expected utility (MEU) and a full insurance allocation.

This dichotomy of preference models provides behavioral implications. Suppose

that there is trading in an environment where we control the perceived complexity,

which is the maximum number k of different A-D securities that each investor can use

to formulate a trade. If we observe that trading stops as k decreases, so that perceived

complexity increases, it must be that some of the investors’ preferences are non-smooth.

More importantly, if this type of perceived financial complexity has the potential

to freeze trade when gains from trade exist, it could be argued that there is room for

policy intervention. Brunnermeier and Oehmke (2010) argue that identifying complex

securities is important in establishing whether they should be regulated subject to an

FDA-type approval system, or limit who is able to invest in them. This paper provides

an argument for supporting such an intervention. The example of Section 2 shows

that, because of perceived complexity, there is no trade, however there are gains from

trade that could materialize if investors were more sophisticated. This is a case where

welfare will increase by policy intervention which forces those who market securities

to make them simpler to understand, or increases the financial literacy of potential

investors.

The model can also provide an explanation of why trading froze in some markets

during the recent financial crisis. Suppose that financial crises generate a lot of un-

certainty (Caballero and Simsek (2013), Brunnermeier and Sannikov (2014)) and that

investors have non-smooth preferences. If we know that during the crisis the investors’

priors about fundamentals do not change significantly but we nevertheless observe a

market freeze, this can be interpreted as the investors perceiving the asset structure of

this market to be complex.

To provide an example, Acharya et al. (2009) describe how a series of events that

was triggered by an unexpected decrease of the US house prices in the first quarter of

2006 led to the freezing of the market for asset-backed commercial paper in 2007, right

after BNP Paribas announced that it was suspending redemptions from its structured

investment vehicles, which were trading these types of securities. We can interpret

the once in a lifetime decline of US house prices as an event that created uncertainty

about fundamentals. However, non-smooth preferences were not sufficient for shutting

down trade. This happened one year later, exactly when the suspension of redemptions

informed everyone that asset-backed commercial paper was no longer easy to price and
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value. That this second event, which did not convey any information about funda-

mentals, triggered an immediate suspension of trade, could be explained by investors

realising that these securities have a complex payoff structure and therefore cannot

simultaneously trade any subset of them.

1.1 Relation to literature

Our paper is related to Billot et al. (2000, 2002), who characterize trading, from a

full insurance allocation, in terms of disjoint sets of priors in a complete markets set-

ting with a full insurance allocation, using the MEU and the Choquet expected utility

(CEU) models. Rigotti et al. (2008) generalize these results for all convex prefer-

ences, encompassing many models with ambiguity averse preferences. Additionally,

they characterize trading from any initial allocation at a (not necessarily full insur-

ance) allocation. Ghirardato and Siniscalchi (2015) analyze the case of non-convex

preferences.

In the MEU model with two investors and a full insurance allocation, Kajii and Ui

(2006) characterize trading in the case of a partition with two elements, which in our

terminology is an incomplete markets structure with only one security and maximum

perceived complexity. In the special case where each investor’s set of priors is the

core of a convex capacity, they also characterize trade in an economy with more than

one security and effectively show that trade in the absence of perceived complexity is

equivalent to trade in the presence of maximum perceived complexity. Dominiak et al.

(2012) extend this result for the CEU model with not necessarily convex capacities.

We improve on these results with Theorem 2, by providing a characterization for any

finite number of investors with general convex preferences and any initial allocation,

as well as for asset structures with more than one security. More importantly, our

characterization applies irrespective of whether trade in the absence of complexity is

equivalent to trade in the presence of maximum perceived complexity, which is crucial

in separating the models in terms of whether they satisfy this property.

In order to derive the characterization we additionally impose a no arbitrage con-

dition, which has clear economic content and is related to the literature on how to

refine the notion of Pareto dominance in environments with uncertainty and diverse

beliefs. Gilboa et al. (2014) and Brunnermeier et al. (2014), among others, argue that

Pareto dominance is not as compelling when there is uncertainty and investors have

different priors in a Savage framework. Gilboa et al. (2014) propose a refinement of

Pareto dominance which specifies that investors would still be better off under a com-

mon prior, whereas Brunnermeier et al. (2014) require this to occur for all beliefs in
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the convex hull of the investors’ beliefs. Our no arbitrage condition applies to general

convex preferences, not just subjective expected utility, nevertheless it has a similar

flavour because it restricts the investors’ subjective beliefs to be not too different as to

allow for an arbitrage trade.

Gul et al. (2017) study investors with cognitive limitations that have coarse (final)

consumption plans, instead of coarse trades, as in the present model. For example,

maximum perceived complexity in their model means that the investor chooses among

all consumption plans that are measurable with respect to a two-element partition of

the state space. However, to finance these consumption plans he is allowed to trade

any combination of the A-D securities, thus generating a complex payoff structure,

according to our terminology. In contrast, in our model the investor can only formulate

a trade that is measurable with respect to a two-element partition. However, if his

initial endowment is measurable with respect to the finest partition, then so is his final

consumption plan. See Section 5.3 in Gul et al. (2017) for a comparison of the two

approaches. Moreover, their focus is different from ours, as they show that allocations

are riskier and prices are more extreme when compared to the no perceived complexity

case, whereas we examine whether trade would occur.

Our definition of complexity relates to how investors perceive the payoff structure.

Alternatively, Caballero and Simsek (2013) use ambiguity and the notion of complexity

about the structure of cross exposures of banks to explain market freezes.

Rigotti and Shannon (2005) characterize Pareto optima and equilibria in the incom-

plete preferences model of Knightian uncertainty of Bewley (1986). This model is used

also by Easley and O’Hara (2010) to explain no trade. Rigotti and Shannon (2012)

show that generic determinacy is a robust feature of general equilibrium models with

ambiguity averse preferences, because kinks are relatively rare, whereas robust inde-

terminacies arise naturally in the model of Bewley (1986), where kinks are ubiquitous.

Although we prove our results only for complete convex preferences, it is straightfor-

ward to extend them in the incomplete preferences model of Bewley (1986).1 In this

model, the indifference curve at any endowment has a kink, hence maximum com-

plexity would generically shut down trade, as opposed to some models with ambiguity

aversion, where indifference curves are smooth at non full insurance endowments.

Our main difference from these papers is that we use complexity in order to explain

no trade in an environment where there are actually gains from trade. This difference

has policy implications, because we suggest that if complexity was lifted then there

would be gains from trade, whereas the aforementioned papers suggest that (in the case

1See Section 4 for details.
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of no trade) uncertainty has destroyed all gains from trade. Moreover, our mechanism

can help explain the BNP Paribas story, where the market froze not because of the

initial event that created uncertainty (and hence ambiguity or incompleteness) about

house prices, but due to the investors’ realization that the payoff structure was too

difficult to understand.

Rigotti and Shannon (2005) provide conditions under which endogenous incomplete

markets can arise. Roughly, if investors have different but precise probabilities about

some states but similar but imprecise probabilities about the remaining states, then

they trade only A-D securities contingent on the former set, so it is as if the latter

securities are missing. Our focus is different, because we ask whether trade would

still occur in the case of maximum perceived complexity, which is not the same as an

incomplete markets structure with one available security. Since investors have different

and precise probabilities about at least one state, maximum perceived complexity does

not shut down trade in any such setting with endogenous incomplete markets.

Lang (2017) defines first-order and second-order ambiguity aversion and character-

izes them in term of whether the indifference curve at the endowment point has a kink

or it is smooth. He also provides several economic examples where this dichotomy

matters. Using his terminology, the present paper shows that second-order ambiguity

aversion implies that maximum perceived complexity does not shut down trade. Mihm

(2016) proposes a model of reference-dependent MEU preferences where the indiffer-

ence curve has a kink at the endowment, so that using our results maximum perceived

complexity can shut down trade.

Our paper is related to the growing literature on complex securities (Amromin

et al. (2011), Henderson and Pearson (2011), Valkanov and Ghent (2014), Griffin et al.

(2014), Hens and Rieger (2014), Sato (2014)). Célérier and Vallée (2016) study more

than 50,000 securities and show that complexity has increased over time. Simsek (2013)

shows that complexity increases opportunities for speculation in a model with hetero-

geneous beliefs. He uses smooth (mean-variance) preferences for which, according to

the present paper, complexity does not shut down trade.

Our notion of complexity specifies that the investor has a coarse understanding of

his available trading strategies. Alternatively, several strands of the literature study

the coarse understanding of the state space, such as in decision theory (Dekel et al.

(2001), Epstein et al. (2007), Ahn and Ergin (2010)), unawareness (Fagin and Halpern

(1988), Heifetz et al. (2006), Galanis (2013)) and inattention (Sims (2003), Woodford

(2012), Gabaix (2014)).

The paper is organized as follows. In the next section we provide an example

which illustrates our approach. Section 3 introduces the model and characterizes the
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occurrence of trade in the case of maximum perceived complexity. Section 4 concludes.

2 Illustration

We illustrate our approach using an example. Let S = {s1, s2, s3} be the state space,

describing the uncertainty about tomorrow. Consider a standard complete markets

setting with three A-D securities, each paying 1 if a particular state s ∈ S occurs

and 0 otherwise. The economy consists of two investors, i and j, who have the same

endowment e = (5, 5, 5), paying 5 at every state. We call this a full insurance allocation.

Their preferences are represented by maxmin expected utility (MEU) with ui(x) = x,

x ∈ R+. In particular, i’s utility from trade f i ∈ R3, where e+ f i ≥ 0, is

V i(e+ f i) = min
q∈Ci

∑
s∈S

ui(e(s) + f i(s))q(s),

where Ci ⊆ ∆S is a compact and convex set of beliefs.

Suppose that Ci is the convex hull of probabilities p1 = (0.2, 0.6, 0.2), p2 = (0.2, 0.4, 0.4)

and p3 = (0.3, 0.5, 0.2), whereas Cj is the convex hull of probabilities q1 = (0.4, 0.4, 0.2)

and q2 = (0.3, 0.4, 0.3).

s1

s2 s3
0.2

0.3
0.4

0.4

0.2

q1
q2p3

0.4

p2p1

0.6

Figure 1: Trade occurs only in the absence of complexity

These sets are shown in Figure 1. The triangle represents the probability simplex,

so that each point represents a probability on {s1, s2, s3}. A dashed line, which is
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parallel to a side of the triangle, contains all probabilities that assign the same weight

on the state depicted opposite to that side. Set Ci is the triangle formed by p1, p2 and

p3, whereas Cj is the line formed by q1 and q2.

Because Ci and Cj are disjoint, there are trades that will make both strictly better

off than consuming their endowment, which gives utility 5. For example, consider

f i = (−3.2, 2.5,−0.5) and f j = (3.2,−2.5, 0.5). This is a trade because f i + f j = 0.

Then, V i(e + f i) = 5.16 and V j(e + f j) = 5.11. Billot et al. (2000) show that in the

MEU model with a full insurance allocation, there is a trade (i.e. the initial allocation

is not Pareto optimal) if and only if the sets of beliefs are disjoint.

According to our terminology, {f i, f j} is a complex trade, because it provides a

different payoff at every state, hence its construction requires a combination of all

three A-D securities.

Suppose now that each investor is cognitively constrained, so that he can buy or

sell at most one A-D security and cannot combine two or more to construct a complex

trade. In other words, he can only formulate a coarse trade, which is measurable to

a two-element partition of S, consisting of a state and its complement. Then, trade

between the two investors translates to i betting on state s occurring, hence buying

the A-D security, and j betting on s not occurring, hence selling the same security.

Consider an A-D security on state s1, with price c < 1. If investor i sells it, he bets

that s1 will not occur and the trade he gets is f i = (c− 1, c, c), whereas if j buys it he

gets f j = (1− c,−c,−c).
Let pi(s) = max

p∈Ci
p(s) and pi(s) = min

p∈Ci
p(s) be i’s maximum and minimum belief on

state s. If both investors agree on this simple trade {f i, f j}, then investor imust strictly

prefer e+ f i over e, and similarly for j. In particular, V i(e+ f i) = 5 + pi(s1)(c− 1) +

(1−pi(s1))c > V i(e) = 5 and V j(e+f j) = 5+pj(s1)(1−c)−(1−pj(s1))c > V j(e) = 5.

These inequalities imply pj(s1) > c > pi(s1). In other words, i agrees to sell if all of

his beliefs place a small weight on s1 happening, relative to j’s beliefs. Similarly, i

buys the A-D security on s1 that j sells if pj(s1) < c < pi(s1). Put more compactly, if

the two investors agree to bet on s1 then [pi(s1), p
i(s1)] ∩ [pj(s1), p

j(s1)] = ∅ and the

converse is also true.

In this example the two investors do not agree to bet on s1 because [pi(s1), p
i(s1)]∩

[pj(s1), p
j(s1)] 6= ∅, and the same is true for s2 and s3. Can we generalise this result,

so that we find sets of beliefs, C
i

and C
j
, such that they are disjoint if and only if the

two investors agree to bet on some state or, equivalently, to trade a particular A-D

security?

Let C
i

be the set of probability measures p such that pi(s) ≤ p(s) ≤ pi(s) for all
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states s, and similarly for C
j
. In Figure 1, C

j
= Cj is still the convex hull of q1 and

q2. However, C
i

is bigger than Ci, as it is the convex hull of p1, p2, p3 and q2. It is

constructed by including all probabilities that are within the respective dashed lines.

It is straightforward that if [pi(s), pi(s)]∩ [pj(s), pj(s)] = ∅ for some s (so that there

is betting on that state), then C
i

and C
j

are disjoint. But the converse is not true. A

counterexample in Section 3.5 shows that even if [pi(s), pi(s)]∩ [pj(s), pj(s)] 6= ∅ for all

states, so that there is never any betting, C
i

and C
j

may still be disjoint. However,

it turns out that these cases are pathological, because they violate the following no

arbitrage condition: it is not possible for any investor to successfully offer to others a

series of bets that others will accept and it will give him a positive payoff at all states.

Sets C
i

and C
j

have q2 as a common element, which is consistent with no betting on

any state.

The example shows that starting from an allocation where there are gains from

trade and as the perceived complexity increases, it is as if the beliefs of the investors

expand, leading to a result of no trade. This is of course very specific because it assumes

MEU with linear u, two investors and a full insurance allocation. However, we show

that the arguments can be substantially generalised to accommodate any allocation

and any number of investors with preferences that are complete, transitive, strongly

monotonic and convex.

Instead of starting from a set Ci of beliefs which are specific to the MEU model,

we follow Rigotti et al. (2008) and consider the set of subjective beliefs πi(ei), which

are the prices of A-D securities, normalised to sum to 1, such that i would prefer not

trading his endowment ei.2 Mathematically, subjective beliefs are the normals of the

supporting hyperplanes of the indifference curve at the endowment point. If preferences

are smooth at the endowment then πi(ei) is a singleton, but if there is a kink then it

is a general convex and compact set. In the standard case of no perceived financial

complexity, Rigotti et al. (2008) show that an allocation is Pareto optimal if and only

if there is a common subjective belief.

In the case of maximum perceived complexity, we establish that two investors agree

to bet on a state if and only if the intervals defined by their maximum and minimum

subjective beliefs on that state are disjoint. For this result, convexity of preferences

is crucial. We then define πi(ei) in the same way as C
i

and say that there is an

S-common belief if the intersection for all investors is nonempty. Our main result,

Theorem 2, specifies that there is no S-common belief if and only if there is trade in an

environment with maximum perceived complexity. To achieve this characterization, we

2In the MEU model with a full insurance allocation, Ci = πi(ei).
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assume a no arbitrage condition, which specifies that it is not possible for an investor

to obtain a strictly positive payoff at each state by successfully offering a bet to all

other investors. Proposition 1 characterizes this no arbitrage condition in terms of the

investors’ subjective beliefs.

It is straightforward that trade in the presence of maximum perceived complexity

implies trade in the absence of perceived complexity. However, the reverse is not true,

as shown in Figure 1, which means that as complexity increases (or investors become

less sophisticated), trade may eventually stop completely. Nevertheless, trade in one

environment is equivalent to trade in the other environment if each investor’s set of

subjective beliefs consists of a single probability measure, which is the case of smooth

(differentiable) indifference curves at the endowment point. This observation allows us

to obtain a dichotomy of models with convex preferences (including most models with

ambiguity aversion), in terms of whether complexity impedes trade.

3 Model

3.1 Set up

Consider a set I of investors with typical element i and a single consumption good.

Uncertainty is represented by a finite set of payoff relevant states S, with typical

element s. The set of consequences is R+, interpreted as monetary payoffs. Investor

i has convex preference relation %i on the set of acts F = RS+, which satisfies the

following standard axioms.

Axiom 1. (Preference). %i is complete and transitive.

Axiom 2. (Continuity). For all f ∈ F , the sets {g ∈ F : g %i f} and {g ∈ F : f %i g}
are closed.

Axiom 3. (Convexity). For all f ∈ F , the set {g ∈ F|g %i f} is convex.

Axiom 4. (Strong Monotonicity). For all f 6= g, if f ≥ g, then f �i g.

An economy is a tuple {%i, ei}i∈I , where |I| ≥ |S| + 1 and {ei}i∈I ∈ RSI++ is the

interior initial allocation. An economy is large if there are at least |S| copies for each

preference relation %i.

We assume a complete market with a collection {ds}s∈S of A-D securities, where

ds has price ps and pays 1 if state s occurs and 0 otherwise. A portfolio {as}s∈S at

prices {ps}s∈S generates net trade f ∈ RS such that f =
∑
s∈S

asds − 1
∑
s∈S

asps, where
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as denotes the units of security ds which are bought if as > 0 or sold if as < 0 and 1

pays 1 at every state. Investor i weakly prefers this portfolio to his initial endowment

if ei + f %i ei.

3.2 Subjective beliefs

Based on Yaari (1969), Rigotti et al. (2008) define investor i’s subjective beliefs at an

act f to be the normals (normalized to be probabilities) of all supporting hyperplanes

at f ,

πi(f) = {p ∈ ∆S : Epg ≥ Epf for all g %i f},

where Epf =
∑
s∈S

p(s)f(s) is the expectation of f given probability measure p. For

convex preferences, πi(f) is nonempty, convex and compact.

Rigotti et al. (2008) establish the following two properties for strictly positive acts f

and convex preferences.3 First, Epf ≥ Epg for some p ∈ πi(f) implies f %i g. Second,

Epg > Epf for all p ∈ πi(f) implies εg + (1− ε)f �i f for sufficiently small ε > 0.

3.3 Common beliefs

We say that there is a common belief at initial allocation {ei}i∈I if
⋂
i∈I
πi(ei) 6= ∅.

For each s ∈ S, let pi(s) = min
p∈πi(ei)

p(s) and pi(s) = max
p∈πi(ei)

p(s) be i’s minimum and

maximum subjective belief about s, respectively. Let

πi(ei) = {q ∈ ∆S : pi(s) ≤ q(s) ≤ pi(s) for all s ∈ S}

be the set of probability measures that are within i’s minimum and maximum subjective

beliefs at ei, for each s ∈ S.4 We next define a weaker notion of common beliefs.

Definition 1. There is an S-common belief at {ei}i∈I if
⋂
i∈I
πi(ei) 6= ∅.

Because πi(ei) ⊆ πi(ei), if there is a common belief then there is a S-common belief

but the converse is not true, as shown in Figure 1. However, if πi(ei) is a singleton for

each i, then the two notions are equivalent.5 In Section 3.7, we show that there is no

S-common belief if and only if there is trade in the presence of maximum perceived

complexity.

3An act f is strictly positive if f(s) > 0 for all s ∈ S.
4Note that πi(ei) is a closed and convex polytope, as it is bounded and the intersection of half spaces.
5The converse is not true, so that if the set of common beliefs is equal to the set of S-common beliefs, it

is not the case that each πi(ei) is a singleton.

12



3.4 Trades and bets

We say that f ∈ RS is a bet on state s ∈ S if there exist a, b ∈ R, ab < 0, such that

f(s′) = a if s′ = s and f(s′) = b otherwise. A bet on s can be constructed by buying or

short selling some units of an A-D security ds that pays 1 if s occurs and 0 otherwise.

A bet on s where a > 0 > b can be generated by buying, at price − b
a−b , a− b units of

ds. If state s does not occur, then the payoff is (a − b) b
a−b = b < 0. If s occurs, the

payoff is (a− b) b
a−b + a− b = a > 0.

Similarly, a bet on s where b > 0 > a can be generated by selling, at price b
b−a ,

b− a units of ds. If state s does not occur, then the payoff is (b− a) b
b−a = b > 0. If s

occurs, the payoff is (b− a) b
b−a − (b− a) = a < 0.

Tuple {f i}i∈I ∈ RSI is a trade if
∑
i∈I
f i = 0 and ei + f i ≥ 0 for all i ∈ I. It is a bet

if, additionally, each f i is a bet on some s. Trade {f i}i∈I is agreeable if ei + f i �i ei

for all i ∈ I. A trade is an agreeable bet if it is an agreeable trade and a bet.

3.5 No arbitrage

Gains from trade exist at an allocation if this allocation is not Pareto optimal. How-

ever, in an environment with uncertainty, the notion of Pareto dominance is not as

compelling as in an environment with certainty. See Gilboa et al. (2014), Brunner-

meier et al. (2014) and references therein for a discussion using the subjective expected

utility model. In essence, these authors refine Pareto dominance by specifying condi-

tions which ensure that the investors’ beliefs are not too far apart. In this paper we

refine Pareto dominance by imposing a no arbitrage condition, which restricts how far

apart the investors’ subjective beliefs can be, as shown further below by Proposition 1.

Definition 2. Tuple {f i}i∈I ∈ RSI is an arbitrage trade if it is an agreeable trade and

there exist partitions {A,B} of I and {Si}i∈B of S such that:

• for all i ∈ A, f i(s) = ki > 0 for all s ∈ S,

• for all i ∈ B, f i =
∑
s∈Si

hs, where hs is a bet on s,

• for all i ∈ I and all s ∈ S, ei %i ei − hs.

It is an arbitrage bet if, additionally, each Si is a singleton.

In an arbitrage trade there are two types of investors. Each i ∈ A is an arbitrageur,

receiving a positive and fixed payoff at each state. Each i ∈ B is a bettor, willing to

bet on some states. Moreover, no investor is willing to take the opposite side of bet

hs. In an arbitrage bet, each bettor bets only on one state.
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Definition 3. There is no arbitrage if there are no arbitrage trades, or there are no

arbitrage bets and the economy is large.6

The requirement of no arbitrage bets is weaker than the requirement of no arbitrage

trades, however it is sufficient for our purposes when the economy is large. In particular,

we use the notion of no arbitrage in the environment of maximum perceived complexity,

in order to exclude cases where there is no bet on any state, yet there is no S-common

belief.

As we argued in the example of Section 2 and Theorem 2 below generalises, there is

an agreeable bet on state s between i and j if and only if [pi(s), pi(s)]
⋂

[pj(s), pj(s)] = ∅,
implying that either pi(s) > pj(s) or pj(s) > pi(s). In other words, the A-D prices

about s that would sustain zero net demand are very different for i and j. More

generally, define

[q(s), q(s)] ≡
⋂
i∈I

[pi(s), pi(s)]

to be the conjunction of all the constraints about state s that an S-common belief must

satisfy. Then, [q(s), q(s)] = ∅ is equivalent to the existence of a bet on s between two

investors.

If [q(s), q(s)] = ∅ for some state s, then it is straightforward that there is no S-

common belief. However, the converse is not true. It is possible that [q(s), q(s)] 6= ∅
for all s ∈ S, so that there is no agreeable bet on any state, yet there is no S-common

belief. However, in that case there are arbitrage opportunities.

To show this, consider the following example with four states and five investors.

Investors i = 1, 2 have identical preferences and endowments. Their set of subjective

beliefs πi(ei) is the convex hull of the following three probabilities,

(0.2315, 0.0385, 0.2773, 0.4527),

(0.2306, 0.1668, 0.3948, 0.2078),

(0.1549, 0.0163, 0.4365, 0.3923).

Investors i = 3, 4, 5 have identical preferences and endowments. Their set of sub-

jective beliefs πi(ei) is the convex hull of probabilities

(0.0303, 0.5476, 0.3179, 0.1042),

(0.4765, 0.1215, 0.1492, 0.2528),

(0.3107, 0.2340, 0.3140, 0.1413).

6Recall that an economy is large if each investor i has |S| copies.
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We then have that [q(s1), q(s1)] = [0.1549, 0.2315], [q(s2), q(s2)] = [0.1215, 0.1668],

[q(s3), q(s3)] = [0.2773, 0.3179] and [q(s4), q(s4)] = [0.2078, 0.2528]. There is no S-

common belief because any p that satisfies the previous four constraints has at most∑
s∈S

p(s) ≤
∑
s∈S

q(s) = 0.969 < 1.

However, this example is problematic because it allows for arbitrage. Fix
∑
s∈S

q(s) <

1 and consider, for each state s, a bet fas for investor i with endowment ei and q(s) =

pi(s), that pays as − 1 if s occurs and as otherwise, where as is bigger but arbitrarily

close to pi(s), so that
∑
s∈S

as < 1. This bet can be generated by short selling an A-D

security ds at price as.

Because the expectation Ep(fas + ei) = as − p(s) + Epei > Epei for all p ∈ πi(ei),
convexity of preferences implies that for small enough k > 0, investor i strictly prefers

the convex combination k(fas + ei) + (1− k)ei = kfas + ei to ei.

Investor 5 can offer bet kfas1 to investor 1, kfas2 to investor 2, kfas3 to investor 3

and kfas4 to investor 4, such that
∑
s∈S

as < 1. Essentially, investor 5 is offering to buy

k units of A-D security ds at price as, for each state s. These bets are going to be

accepted, because they make each i = 1, 2, 3, 4 strictly better off. Moreover, no other

investor is willing to take the opposite side of each bet, −kfas . However, investor 5’s

payoff at any state s is −k
∑
s′ 6=s

as′ − k(as − 1) = −k(
∑
s∈S

as − 1) = k(1 −
∑
s∈S

as) > 0.

Hence, all conditions of Definition 2 are satisfied.

The following Proposition generalises this result.

Proposition 1. Suppose that for each s ∈ S, [q(s), q(s)] ≡
⋂
i∈I

[pi(s), pi(s)] 6= ∅. Then,

no arbitrage implies
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s). Conversely,
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s) implies

that there are no arbitrage bets.

Proof. Suppose that for each s ∈ S, [q(s), q(s)] =
⋂
i∈I

[pi(s), pi(s)] 6= ∅ and
∑
s∈S

q(s) < 1.

Choose as > q(s) such that
∑
s∈S

as < 1. We will construct an arbitrage trade {f i}i∈I ,

or an arbitrage bet in the case that the economy is large. Note that for each s ∈ S,

q(s) = pi(s) for some i ∈ I and q(s) ≤ pj(s) for all j ∈ I.

Consider bet fs,a that pays a − 1 at s and a otherwise. For all a such that a >

pi(s) = q(s), we have that Ep(fs,a + ei) = a − p(s) + Epei > Epei for all p ∈ πi(ei).
From the second property of πi, there exists small enough k ∈ (0, 1) such that k(fs,a +

ei) + (1 − k)ei = kfs,a + ei �i ei. Therefore, investor i would strictly prefer to get

bet kfs,a which pays ka− k at s and ka otherwise. Moreover, this is also true for any

0 < k0 < k.
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The third condition of an arbitrage trade is also satisfied because [q(s), q(s)] 6= ∅
and a > pi(s) = q(s) imply a > pi(s) for all i ∈ I. This means that Ep(−fs,a + ei) =

−a+ pi(s) +Epei < Epei for some p ∈ πi(ei), hence the first property of the subjective

beliefs implies that ei %i ei − fs,a. From convexity, we also have ei %i ei − kfs,a.
By repeating the same argument for each s ∈ S, we can create a tuple {ksfs,as}s∈S

of bets. If the economy is not large, there is the possibility that for the same investor i

we have pi(s) = q(s), pi(s′) = q(s′) and this can be true for more than two states. Then,

the same arguments show that investor i would strictly prefer to get ksfs,as +ks′fs′,as′ .

However, in this case i receives an f i that provides different payoffs in s, s′ and S\{s, s′},
hence it is an arbitrage trade and not an arbitrage bet. If the economy is large, then

there are |S| investors with the same preferences as i, hence we can assign to each copy

a bet on a different state.

By setting k = min
s∈S

ks, the new tuple is {kfas}s∈S , where for each i with q(s) = pi(s)

we have f i = kfas and kfas + ei �i ei. Because there are at least |S|+ 1 investors, we

can assign one investor i∗ to take the opposite side of {kfas}s∈S , which yields
∑
s∈S
−kfas

and pays −k
∑
s′ 6=s

as′ − k(as − 1) = k(1 −
∑
s∈S

as) > 0 at all states. For any j who has

not been offered kfas for some s ∈ S, we let f j(s) = kj > 0 for all s ∈ S, where kj is

arbitrarily small. From Axiom 4, each j would strictly prefer to accept f j and this is

affordable because
∑
s∈S
− kfas is strictly positive at all states, so i∗ would get a slightly

lower payoff at each state. Hence, we have created an arbitrage trade, or an arbitrage

bet in the case of a large economy. We can create a similar arbitrage opportunity if∑
i∈I
q(s) > 1, with bets that pay k − kas at s and −kas otherwise, where q(s) > as, for

small enough k > 0.

Conversely, suppose
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s) but there is an arbitrage bet {f i}i∈I .

By definition we have
∑
i∈B

f i < 0 and f i + ei �i ei for all i ∈ B, where f i is of the form

f i(si) = ai and f i(s) = bi for s 6= si, ai 6= bi. From the first property of πi(ei) and

Axiom 4, we have that Ep(ei + f i) > Epei for all p ∈ πi(ei), all i ∈ I.

We next show that Epf i > 0 for all p ∈ πi(ei) and all i ∈ I. For all i ∈ A this

is obvious, as they receive a fixed positive payoff at all states. Fix i ∈ B and let

si = s. Note that pi(s)ai + pi(S \ s)bi > 0 and pi(s)ai + pi(S \ s)bi > 0, because

1− pi(s) = pi(S \ s) and 1− pi(s) = pi(S \ s), where pi(E) = min
p∈πi(ei)

p(E) and pi(E) =

max
p∈πi(ei)

p(E), for any event E ⊆ S. Take p ∈ πi(ei). If p(s) = p(s) or p(s) = p(s) then

we are done. Suppose p(s) < p(s) < p(s) and let q1(s) = p(s), q2(s) = p(s), where

q1, q2 ∈ πi(ei). Let λ ∈ (0, 1) such that λq1(s) + (1−λ)q2(s) = p(s), which implies that
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λq1(S \ s) + (1−λ)q2(S \ s) = p(S \ s). We also have that q1(s)a
i + q1(S \ s)bi > 0 and

q2(s)a
i + q2(S \ s)bi > 0. Multiplying with λ, 1−λ, and adding the two inequalities we

have that Epf i = p(s)ai + p(S \ s)bi > 0.

Because
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s), there exists a ∈ [0, 1] such that a
∑
s∈S

q(s) + (1 −

a)
∑
s∈S

q(s) = 1. For each s ∈ S, let p(s) = aq(s)+(1−a)q(s). We then have
∑
s∈S

p(s) = 1,

so that p is a probability measure such that p(s) ∈ [q(s), q(s)] for all s ∈ S, hence

p ∈
⋂
i∈I
πi(ei) 6= ∅. Using this p and by adding Epf i > 0 over all i ∈ B we have∑

i∈B
Epf i = Ep

∑
i∈B

f i < 0, a contradiction.

3.6 Absence of complexity

Consider first the standard environment of no perceived complexity, where each investor

can understand and trade any combination of the A-D securities. In other words, his

trade can be measurable with respect to any partition of S, even the finest one. We say

that there is trade in the absence of complexity if there is an agreeable trade {f i}i∈I ∈
RSI , so that {ei}i∈I is not Pareto optimal. Formally,

∑
i∈I
f i = 0 and ei + f i �i ei for all

i ∈ I.7 Proposition 7 in Rigotti et al. (2008) shows that interior allocation {ei}i∈I is

not Pareto optimal if and only there is no common belief, so that
⋂
i∈I
πi(ei) = ∅.8

Theorem 1. There is trade in the absence of complexity if and only if there is no

common belief.

3.7 Maximum perceived complexity

Consider now a more restrictive setting, where preferences and the allocation {ei}i∈I
are still the same, however each investor is so unsophisticated or cognitively constraint

that he can buy or sell at most one A-D security, instead of any linear combination, as

in the previous section. This means that his available trades are coarse, as they need

to be measurable with respect to a two-element partition {s, S \ s} of the state space.

We say that there is trade in the presence of maximum perceived complexity if there

is an agreeable bet. The main result of the paper characterises the existence of trading

7Note that because of Axiom 4, {ei}i∈I is not Pareto optimal (
∑
i∈I
f i = 0, f i + ei %i ei for all i ∈ I and

f j + ej �j ej for some j ∈ I) if and only if
∑
i∈I
f i = 0 and ei + f i �i ei for all i ∈ I.

8Theorem 3 in Rigotti and Shannon (2005) proves the same result in the incomplete preferences model
of Bewley (1986).
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in the presence of maximum perceived complexity, under a no arbitrage condition.

Theorem 2. Under no arbitrage, there is trade in the presence of maximum perceived

complexity if and only if there is no S-common belief.

Proof. Suppose that
⋂
i∈I
πi(ei) = ∅. We first show that

⋂
i∈I

[pi(s), pi(s)] = ∅ for some

s ∈ S. Suppose not, so that for each s ∈ S, [q(s), q(s)] ≡
⋂
i∈I

[pi(s), pi(s)] 6= ∅. No

arbitrage and Proposition 1 imply that
∑
s∈S

q(s) ≤ 1 ≤
∑
s∈S

q(s). Let a ∈ [0, 1] such that

a
∑
s∈S

q(s) + (1− a)
∑
s∈S

q(s) = 1. For each s ∈ S, let p(s) = aq(s) + (1− a)q(s). We then

have
∑
s∈S

p(s) = 1, so that p is a probability measure such that p(s) ∈ [q(s), q(s)] for all

s ∈ S, contradicting that
⋂
i∈I
πi(ei) = ∅.

We therefore have that, for some i, j ∈ I and s∗ ∈ S, [pi(s∗), pi(s∗)]
⋂

[pj(s∗), pj(s∗)] =

∅. Suppose without loss of generality that pi(s∗) > pj(s∗). Let c be such that

pi(s∗) > c > pj(s∗). Define bet f on s∗ such that f(s∗) = 1 − c and f(s) = −c
for s 6= s∗. We then have that Epf = p(s∗)(1− c)− (1− p(s∗))c > 0 for all p ∈ πi(ei)
and Ep(−f) = p(s∗)(−1 + c) + (1− p(s∗))c > 0 for all p ∈ πj(ej).

Define bet {fk}k∈I such that f i(s∗) = f(s∗) − ε and f i(s) = f(s) for s 6= s∗, for

sufficiently small ε > 0 such that the above inequality still holds. For each k 6= i, j, let

fk(s∗) = ε
|I\{i,j}| and fk(s) = 0 for s 6= s∗. Let f j = −f .

By Axiom 4, for all k ∈ I, each p ∈ πk(ek) has full support on S. Hence, for small

enough ε > 0 we have, for all k ∈ I, Epfk > 0 for all p ∈ πk(ek) and Ep(fk + ek) >

Epek. From the second property of πk(ek), there exists small enough λk > 0 such that

λk(ek + fk) + (1 − λk)ek = λkfk + ek �k ek. By taking λ = min
k∈I

λk, we have that

ek + λfk �k ek for all k ∈ I. Because
∑
k∈I

λfk = 0, {λfk}k∈I is an agreeable bet.

Conversely, suppose there is an agreeable bet {f i}i∈I . This means that
∑
i∈I
f i = 0

and each f i is of the form f i(si) = ai and f i(s) = bi for s 6= si, where ai 6= bi.

Moreover, f i + ei �i ei for all i ∈ I. From the first property of πi(ei) and Axiom 4, we

have that Ep(ei + f i) > Epei for all p ∈ πi(ei), all i ∈ I. In the proof of Proposition 1,

we show that the same inequality Epf i > 0 holds for all p ∈ πi(ei), all i ∈ I. Suppose

there is an S-common belief p. Then, by adding Epf i > 0 over all investors we have

0 <
∑
i∈I

Epf i = Ep
∑
i∈I
f i = 0, a contradiction.

Combining Theorems 1 and 2, we can conclude that if no common belief implies

no S-common belief, then trade in the absence of perceived complexity implies trade

in the presence of maximum perceived complexity. As shown by example in Section 2,
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this is not true in general, however a sufficient condition (satisfied by several models,

such as subjective expected utility, multiplier, mean-variance and smooth ambiguity

preferences) is that each investor has a unique subjective belief at the initial allocation,

hence his indifference curve has no kinks.

4 Concluding remarks

We characterize the occurence of trade in two environments which are the extreme

opposites in terms of the perceived complexity of the payoff structure. The first is the

standard setting of no perceived complexity, where each investor is sophisticated enough

to be able to understand and trade any combination of the available securities. In the

second, each investor has cognitive limitations so that even though he can understand

each A-D security separately, he cannot combine two or more and construct a complex

trade. In other words, he can only formulate a coarse trade which is measurable with

respect to a two-element partition of the state space, consisting of a state and its

complement.

Our main question is, can this type of complexity explain market freezes? The

answer depends on how investors perceive risk and uncertainty. We first show that

for smooth preferences, maximum perceived complexity does not destroy all trading

opportunities, meaning that if there is trade with no perceived complexity, there will

be trade with maximum perceived complexity. More importantly, the same conclusion

would hold even if we were to provide a more detailed but (necessarily) weaker definition

of complexity (e.g. generating complexity endogenously through cognitive costs or

computational complexity), as long as each investor can trade at least one security. In

other words, our result for these preferences that complexity does not impede trade is

robust, because it is independent of the particular details of how a complex security is

defined. Examples of smooth preferences are subjective expected utility, the smooth

variational preferences of Maccheroni et al. (2006) (including, as special cases, the

mean-variance preferences of Markowitz (1952) and Tobin (1958) and the multiplier

preferences of Hansen and Sargent (2001)), the smooth ambiguity of Klibanoff et al.

(2005) and the second-order expected utility of Ergin and Gul (2009).

If preferences are non-smooth, we find that maximum perceived complexity can im-

pede trade. These are preferences for which there are multiple sets of A-D prices that

support zero net demand at the initial allocation, because the indifference curve has a

kink at the endowment point. Examples are the CEU with convex capacity of Schmei-

dler (1989), the MEU of Gilboa and Schmeidler (1989), the non-smooth variational
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preferences of Maccheroni et al. (2006), the confidence preferences of Chateauneuf and

Faro (2009) and the uncertainty averse preferences of Cerreia-Vioglio et al. (2011). For

instance, in the MEU model with a full insurance allocation, each investor’s subjective

beliefs coincide with his (non unique) priors and his indifference curve has a kink at

his endowment. As shown in Figure 1, in that case maximum perceived complexity

completely shuts down trade. This means that a policy which simplifies the securi-

ties can have a positive welfare effect. An interesting next step would be to examine

these welfare effects using a more detailed but weaker definition of complexity. This is

relegated to future research.

Our results make heavy use of the following property of convex preferences. If the

expectation of security f i, according to all of i’s subjective beliefs at his endowment

ei, is higher than the expectation of ei, then there exists a convex combination of f i

and ei that investor i strictly prefers to ei. This property is also true in the incomplete

preferences model of Bewley (1986), which means that are our results apply there as

well. The distinctive property of this model is that indifference curves have a kink

at each endowment, whereas in some well known models with convex and complete

preferences, such as MEU, kinks appear only at a full insurance endowment. Our

results then predict that maximum perceived complexity would shut down trade at all

allocations in the Bewley (1986) model but only at full insurance allocations in the

MEU model.

Finally, our results can be generalized to an incomplete markets setting. We can

model an incomplete markets structure by having a partition P of S. Given event

E ∈ P, a security pays 1 if E occurs and 0 otherwise. A constrained Pareto optimal

allocation (i.e. no trade in the absence of complexity) is then characterized by the

existence of a P-common belief, meaning that all investors agree on all events in P
according to one of their subjective beliefs. Similarly, no trade in the presence of

maximum perceived complexity is characterized by a P-common belief, so that there

exists a probability measure which is between the maximum and minimum probability

assigned to each event P, by all investors.
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